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Abstract
A class of indecomposable representations of Uq(s�n) is considered for q,
an even root of unity (qh = −1) exhibiting a similar structure as (height h)
indecomposable lowest weight Kac–Moody modules associated with chiral
conformal field theory. In particular, Uq(s�n) counterparts of the Bernard–
Felder BRS operators are constructed for n = 2, 3. For n = 2 a pair of
dual d2(h) = h-dimensional Uq(s�2) modules gives rise to a 2h-dimensional
indecomposable representation including those studied earlier in the context
of tensor-product expansions of irreducible representations. For n = 3 the
interplay between the Poincaré–Birkhoff–Witt and (Lusztig) canonical bases
is exploited in the study of d3(h) = h(h+1)(2h+1)

6 -dimensional indecomposable
modules and of the corresponding intertwiners.

PACS numbers: 0365F, 0210T, 0220, 1125H, 1130L

1. Introduction

Quantum-group representations at q, a root of unity, arise in the study of chiral components of
a Wess–Zumino–Novikov–Witten (WZNW) [1, 2] current algebra model [3–11]. Such chiral
models necessarily involve an extended phase space with unphysical degrees of freedom. The
Verma modules of a Kac–Moody current algebra (or, rather, their Wakimoto extensions [12])
were shown to give rise to a Becchi–Rouet–Stora (BRS) cohomology [13, 14]. A quantum
group counterpart of this construction was worked out for Uq(s�2) in [7] where a complex of
partially equivalent Uq(s�2) modules and intertwining ‘BRS’ maps was exhibited. Motivated
by this paper we study dual pairs of finite-dimensional indecomposable representations of
Uq(s�n) and the intertwining maps between them.

4 Permanent address: Division of Theoretical Physics, Institute for Nuclear Research and Nuclear Energy, Bulgarian
Academy of Sciences, Tsarigradsko Chaussee 72, BG-1784 Sofia, Bulgaria.
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Dual pairs of h-dimensional indecomposable Uq(s�2) modules first appeared in tensor-
product expansions of irreducible ones as subrepresentations and subquotients of 2h-
dimensional indecomposable modules [15–18]. We introduce them from the outset as
counterparts of indecomposable affine Kac–Moody modules of the chiral current algebra.
The physical representations then appear as appropriate subquotients.

After some preliminary details about dual representations and linear and antilinear
antiinvolutions in Uq(s�n) (section 2) we give in section 3 a comprehensive study of dual
pairs of h-dimensional indecomposable Uq(s�2) modules for

qh = −1 q + q = 2 cos
π

h
. (1.1)

Our attention is focused on two families of pairs, (Cp, C2h−p) and (Vp, V2h−p). The
representations Cp and C2h−p are cyclic, Vp has one highest weight (HW) and two lowest
weight (LW) vectors for 0 < p < h, while V2h−p has one LW and two HW vectors (the
modules Ch and Vh being equivalent and irreducible). For both pairs we define intertwining
maps (‘BRS operators’) Qh−p : Cp → C2h−p (Vp → V2h−p) whose (h − p)-dimensional
kernels Ih−p carry isomorphic irreducible representations (IR) of Uq(s�2). The ‘physical’
p-dimensional IR appears as a quotient Cp/Ih−p � Vp/Ih−p. Both Cp and Vp admit a unique
invariant bilinear form which gives rise to a non-degenerate inner product on the factor space
(proposition 3.3).

In section 4 we construct 2h-dimensional indecomposable representations Dp and Wp

of Uq(s�2) such that C2h−p and V2h−p appear as Uq(s�2) invariant submodules while
their duals, Cp and Vp, are isomorphic to the quotient spaces Dp/C2h−p and Wp/V2h−p,
respectively. Wp coincide with the indecomposable 2h-dimensional Uq(s�2) modules
considered earlier [15–17].

In section 5 after some general remarks about Uq(s�n) we study the case of n = 3. We
only consider the analogs of the pairs (Vp, V2h−p) in this case constructing d3(h)-dimensional
indecomposable Uq(s�3) modules Vp (p = (p12, p23), pi i+1 ∈ N) where

d3(h) = h(h + 1)(2h + 1)

6
. (1.2)

The dual modules, VwLp, are defined in terms of the longest element, wL = w1w2w1, of the
s�3 Weyl group. We give an explicit construction of the BRS operator

Qp : VwLp → Vp (1.3)

using the Poincaré–Birkhoff–Witt (PBW) basis in both modules. For

(1 <)p13 = p12 + p23 < h (1.4)

Qp maps the cosingular vector |wLp; 0, 0, 0〉 ∈ VwLp onto a singular vector inVp which belongs
to the canonical (Lusztig–Kashiwara) basis. Denoting by h the weight (p12 = h, p23 = h);
the BRS property is expressed by the relation

Qh+wLpQp = 0 (Qh+wLp : Vp → Vh+wLp). (1.5)

The BRS cohomology is found to be trivial (for both n = 2 and 3):

KerQh+wLp = Im Qp (⊂ Vp) (1.6)

Im Qp and KerQh+wLp defining an invariant subspace of Vp. This invariant subspace is shown
to lie in the kernel of the invariant Hermitean form on Vp.
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2. Preliminaries. Dual representations and (co)singular vectors

We shall assume, for definiteness, throughout this paper that q = e−i π
h with h an integer greater

than n. Such q appears naturally as quantum-group deformation parameter corresponding to
the left chiral WZNW field in the conventions of [11]. We shall use the notations q := q−1,
[m] := qm−qm

q−q and (m)± := q±2m−1
q±2−1 ≡ q±(m−1)[m].

We start by fixing our conventions: Uq(s�n) is a Hopf algebra with 4(n− 1) (Chevalley)
generators Ei, Fi, qHi , q−Hi ≡ qHi , i = 1, 2, . . . , n− 1 satisfying

qHiEj = EjqHi+cij qHiFj = FjqHi−cij qHi qHi = 1I = qHi qHi (2.1)

cij being the s�n Cartan matrix,

[Ei, Fj ] = δij [Hi] (2.2)

and the Serre relations

Ei+1 iEi = qEiEi+1 i for Ei+1 i := EiEi+1 − qEi+1Ei 1 � i � n− 2

FiFi i+1 = qFi i+1Fi for Fi i+1 := Fi+1Fi − qFiFi+1 1 � i � n− 2.
(2.3)

The coproduct � : Uq(s�n)→ Uq(s�n)⊗ Uq(s�n) and the counit ε : Uq(s�n)→ C are
algebra homomorphisms fixed by their action on the generators

�(q±Hi ) = q±Hi ⊗ q±Hi
�(Ei) = Ei ⊗ qHi + 1I⊗ Ei �(Fi) = Fi ⊗ 1I + qHi ⊗ Fi (2.4)

ε(q±Hi ) = 1 ε(Ei) = 0 = ε(Fi). (2.5)

The antipode γ : Uq(s�n) → Uq(s�n) is an algebra antihomomorphism (i.e. γ (XY) =
γ (Y )γ (X)) characterized by the property∑

γ (X1)X2 =
∑

X1γ (X2) = ε(X) 1I for �(X) =
∑

X1 ⊗X2. (2.6)

With the above coproduct and counit this relation implies

γ (q±Hi ) = q∓Hi γ (Ei) = −Ei qHi γ (Fi) = −qHiFi. (2.7)

A convenient way to single out the two Borel (Hopf-) subalgebrasUFq andUEq ofUq(s�n) [19]
(corresponding to the Gauss decomposition of the WZNW monodromy matrix M =
M+M

−1
− [10]) is to arrange their generators in an n× n matrix form where

M±1
± = N±D Dij = qdi δij
n∑
j=1

dj = 0
i∑
j=1

dj = −
n−1∑
j=1

(c−1)ijHj i � n− 1

N+ =




1 (q − q)F1 (q − q)F12 · · ·
0 1 (q − q)F2 · · ·
0 0 1 · · ·
· · · · · · · · · · · ·




N− =




1 0 0 · · ·
(q − q)E1 1 0 · · ·
(q − q)E21 (q − q)E2 1 · · ·

· · · · · · · · · · · ·


 .

(2.8)

(In fact, the weight operators qdi , together with Ei and Fi , give rise to the so-called simply
connected [20] quantum universal enveloping algebra Uq(s�n).) The subalgebra UFq (resp.,

UEq ) is generated by the matrix elements of M+ (resp., M−1
− ). The coproduct of the latter is
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expressed as the matrix multiplication of two copies of M+ (resp., M−) while the antipode is
related to the inverse matrices:

�(M±αβ) = M±ασ ⊗M±σβ (M−1
− )

α
β = γ (M−αβ). (2.9)

We introduce a grading in Uq(s�n) (corresponding to the depth of [13]) ascribing degree 1 to
Ei, 0 to q±Hi , and −1 to Fi (so that, e.g. E21 and F12 have degree 2 and −2, respectively);
we denote by U−q (U

+
q ) the subalgebra of UFq (U

E
q ) of elements of negative (resp., positive)

degree.
Next we introduce the concepts of (co)singular vectors and dual indecomposable

representations adapting to our case the discussion in section 4 of [13].
Let V be a Uq(s�n) module. An eigenvector v ∈ V of the Cartan generators qHi (i.e. a

weight vector) is said to be (F -) singular if it satisfiesU−q v = 0 (sometimes we shall also use
for such a vector the common term ‘LW vector’). It is called cosingular if there is no v′ ∈ V
such that v ∈ U+

q v
′. Two cosingular vectors are equivalent if their difference belongs to U+

q v1

for some v1 ∈ V . The LW vector in a Verma module is both singular and cosingular.
These definitions are adapted for LW modules. For HW modules one can just reverse the

roles of U+
q and U−q (and of LW and HW vectors).

We shall be dealing in what follows with indecomposable Uq(s�n) modules Vp
corresponding—in a way that will be made clear below—to integral dominant weights
& = p − ρ, and their duals. Here p are the shifted weights and ρ is the half sum of
the positive roots; we shall use the (linearly dependent) ‘barycentric’ coordinates of p

p =
{
(p1, . . . , pn);

n∑
i=1

pi = 0, pi i+1 := pi − pi+1 ∈ N = {1, 2, . . .}
}

(2.10)

fixed by the condition & ≡ ∑n−1
i=1 λi &

(i) = ∑n−1
i=1 (pi i+1 − 1)&(i), where &(i) are the

fundamental weights (ρ =∑n−1
i=1 &

(i)).
There are several inequivalent representations of this type which share the following

properties.

(i) Vp is a direct sum of finite-dimensional weight spaces

Vp = ⊕λ∈&−+QV (λ)p (qHi − qλi )V (λ)p = 0 (dim V (λ)p <∞) (2.11)

where &− =
∑n−1
i=1 (1− pn−i n+1−i ) &(i) and Q is the s�n root lattice; the LW subspaces

are one-dimensional

dim V (&−)p = 1. (2.12)

We shall keep (2.12) as a defining property of Vp even when V (&−)p is not a LW subspace,
i.e. for Fi V (&−)p �≡ 0, but the corresponding vector that generates V (&−)p is cosingular.

(ii) The Uq(s�n) Casimir operators are multiples of the identity in Vp; their eigenvalues are
expressed as polynomials in qpi (coinciding with the Casimir eigenvalues for finite-
dimensional irreducible subrepresentations). In particular, the second-order Casimir
operator and its eigenvalue are related to theUq(s�n) invariant q-trace of the corresponding
monodromy matrix (2.8), tr(q2ρ∨M) (cf [19]), where q2ρ∨ := q

∑
α>0 Hα is taken in the

fundamental representation, q2ρ∨ = diag {q1−n, q3−n, . . . , qn−1}
{

tr (q2ρ∨M) −
n∑
i=1

q2pi

}
Vp = 0. (2.13)
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For n = 2 we obtain (p ≡ p1 − p2)

{(q − q)2FE + qH+1 + qH+1 − qp − qp}Vp = 0 (2.14)

an equality that can be also cast into the more familiar form(
C2 − 2

[
p − 1

2

] [
p + 1

2

])
Vp = 0 C2 = EF + FE + [2]

[
H

2

]2

. (2.15)

For n = 3 (2.13) yields the following analogue of (2.14):{
(q − q)2

(
F1 E1q

H1+2H2
3 +1 + F12 E21q

H2−H1
3 −1 + F2 E2q

2H1+H2
3 +1

)

+ q
2
3 (2H1+H2)+2 + q

2
3 (H1−H2) + q

2
3 (H1+2H2)+2

−q2p1 − q2p2 − q2p3

}
Vp = 0. (2.16)

The dual space V ′p—i.e. the space of linear forms 〈f, ·〉 on Vp, carries the contragradient

representation X → X̌. We shall define it by

〈X̌f, v〉 = 〈f, γ ◦ σ (X)v〉 (f ∈ V ′p, v ∈ Vp ) (2.17)

where γ is the antipode (2.7) and σ a Uq automorphism (introduced explicitly for reasons that
will be made clear below).

We shall make use of the following result (cf section 3 of [10]).

Proposition 2.1. The associative algebra Uq(s�n) admits, for q on the unit circle, a linear
antiinvolution X → X′ and an antilinear Hermitean conjugation X → X∗ (both preserving
the commutation relations) which make the Cartan generators qHi symmetric, resp. unitary(

q±Hi
)′ = q±Hi (

q±Hi
)∗ = q∓Hi (2.18)

and extend to a coalgebra homomorphism, resp. antihomomorphism(
X ⊗ Y )′ = X′ ⊗ Y ′ (X ⊗ Y )∗ = Y ∗ ⊗X∗. (2.19)

The Hermitean conjugation is uniquely determined from these properties:

E∗i = Fi F ∗i = Ei. (2.20)

The ‘transposition’ X → X′ is determined by (2.19) and (2.18) up to a cyclic inner
automorphism, Ei → qmEi, Fi → qmFi, m ∈ Z. We shall fix this freedom setting, for
the Chevalley generators

E′i = Fi qHi−1 F ′i = qHi−1Ei (2.21)

a choice yielding a symmetric monodromy matrix.

We shall choose in what follows the automorphism σ so that

γ ◦ σ(X) = X′ ∀X ∈ Uq. (2.22)

Using (2.7) and defining the transposition as in (2.21), one can see that forUq(s�n) this amounts
to setting σ equal to the involutive automorphism

σ(qHi ) = qHi σ (Ei) = −qFi σ (Fi) = −qEi ⇒ σ 2 = id. (2.23)

The most important feature of the choice (2.22) is that it makes the map γ ◦ σ involutive too,
( γ ◦ σ )2 = id; the invariance of the pairing on V ′p × Vp can be now expressed as

〈 X̌f, v 〉 = 〈 f, X′v 〉 for all f ∈ V ′p v ∈ Vp X ∈ Uq. (2.24)
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As will become explicit in the following sections (see also [14]), in fact the contragradient
representation of Vp is equivalent to that of weight

p′ = wLp = {pn, . . . , p1} ⇒ p′i i+1 = −pn−i n−i+1 (2.25)

with wL being the longest Weyl-group element

wL = w1 . . . wn−1w1 . . . wn−2 . . . w1w2w1 (2.26)

i.e. V ′p � Vp′ . We note that the involutive element wL (w
2
L = 1) only coincides with

the reflection wθ with respect to the highest root θ for n = 2, 3. Identifying wL with its
(n − 1)-dimensional representation in the basis of fundamental weights &(i) we find that
det wL = (−1)(

n

2).
The counterpart of the weight space expansion (2.11) for Vp′ reads

Vp′ = ⊕λ∈&−′+QV (λ)p′ dim V (λ)p′ = dim V (λ)p (2.27)

with the (finite-dimensional) space V (λ)p′ being equivalent to the dual to V (λ)p . It follows

from (2.17) that for homogeneous elements vλ ∈ V (λ)p and fµ ∈ V (µ)p′ the pairing 〈f, v〉 is
only non-zero if µ = λ:

〈fµ, vλ〉 = δµλ 〈fλ, vλ〉. (2.28)

Remark 2.2. Using the notation Vp′ we thus extend the admissible values of p to Weyl-group
images of dominant weights which are no longer dominant. We shall adopt the resulting more
general label for the class of indecomposable representations of interest in what follows.

For p1n < h there is a unique finite-dimensional irreducible Uq(s�n) module Vp and
its dual is the (irreducible) contragradient module Vp′ . If we allow for indecomposable
modules, there is of course a wider list of possibilities even when one restricts attention, as we
shall, to finite-dimensional representations. In this more general case dual pairs

(Vp, Vp′
)

are
characterized by the following relationship among their singular and cosingular vectors.

Proposition 2.3. There is a duality between singular vectors and equivalence classes of
cosingular vectors:

Ker
(
U∓q |Vp

)′ = Vp′/U±q Vp′ . (2.29)

In other words, the bilinear pairing 〈, 〉 : Vp′ × Vp → C projects to nondegenerate pairings

〈, 〉 : Vp′/U±q Vp′ × KerU∓q |Vp → C. (2.30)

Proof. The argument is the same as in section 4 of [13]. To fix the ideas, we shall demonstrate
that KerU−q |Vp is the subspace of Vp orthogonal to U+

q Vp′ . Let v ∈ (
U+
q Vp′

)⊥
(⊂ Vp); then,

for all f ∈ Vp′ , X+ ∈ U+
q

0 = 〈X̌+f, v〉 = 〈f, γ ◦ σ(X+)v〉 ⇒ U−q v = 0. (2.31)

(In the last implication we have used the non-degeneracy of the form 〈, 〉 and the fact that the
map γ ◦σ : U+

q → U−q is onto.) This proves that each vector v ∈ (U+
q Vp′)⊥ ⊂ Vp is singular.

The converse statement follows from the fact that the map γ ◦ σ is invertible. �
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3. Indecomposable h-dimensional representations of Uq(s�2)

We shall study in this section the simplest, rank r = 1, case of Uq(s�2) generated by
E,F, qH , qH satisfying qHqH = 1 = qHqH and

[E,F ] = [H ] = qH − qH
q − q qHE = EqH+2 qHF = FqH−2. (3.1)

A major simplification in this case results from the fact that both products EF and FE are
expressed in terms of the Cartan generators q±H and the central operator

[
p

2

]2
defined in terms

of the quadratic Casimir invariant (2.15), or equivalently

EF +

[
H − 1

2

]2

=
[p

2

]2
= FE +

[
H + 1

2

]2

. (3.2)

There are three inequivalent dual pairs of h-dimensional representations of Uq(s�2)

corresponding to different ‘rational factorizations’ of EF and FE. All six representations
share the existence of a canonical weight basis vpm such that

(qH − q2m−p+1)vpm = 0 p, m ∈ Z (3.3)

(EF − [m][p −m])vpm = 0 = (FE − [m + 1][p −m− 1])vpm. (3.4)

Clearly, the eigenvalues of qH ,EF and FE are periodic in m (with period h) and in p (with
period 2h). We shall require that the action of E and F in the six representations we are going
to define preserves this periodicity property.

First, we introduce the lowest (resp. highest) weight Verma modules [20,21] V−p (V+
p) for

which the action of E and F on the respective canonical bases vpm = |p,m〉− (|p,m〉+) are
given by

E|p,m〉− = |p,m + 1〉− ⇒ F |p,m〉− = [m][p −m]|p,m− 1〉− (3.5)

F |p,m〉+ = |p,m− 1〉+ ⇒ E|p,m〉+ = [m + 1][p −m− 1]|p,m + 1〉+ (3.6)

assuming that the LW vector in V−p is |p, 0〉−, and the HW vector in V+
p is |p, h − 1〉+, thus

fixing the range of m as m � 0 and m � h− 1, respectively.
Using the periodicity property in m, we can introduce the cyclic h-dimensional

counterparts C±p of V±p identifying all |p,m〉± with m mod h. It is easy to prove that the
representation C+

p is equivalent to the dual of C−p : in the basis fpm of (C−p )′ defined by
〈fpm, vpn〉 = δmn, 0 � m, n � h− 1, one obtains from (2.24)

Ěfpm = q2−p+2m[m + 1][p −m− 1]fpm+1 F̌ fpm = qp−2mfpm−1

and it only remains to renormalize the basis vectors fpm → qm(m+1−p)fpm to obtain a full
coincidence with (3.6). Note that the coefficients for both C−p and C+

p are invariant with respect
to the transformation (p,m)→ (−p,m− p).

For the second pair C±p of cyclic representations the canonical-basis vectors
(vpm =)|p,m〉 ∈ Cp and | − p,m− p〉 ∈ C−p both satisfy (3.3), (3.4) and

E|p,m〉 = (m + 1)+|p,m + 1〉 F |p,m〉 = q2−p(p −m)+|p,m− 1〉 (3.7)

and the counterpart of these relations for negativep (reflecting the symmetryp↔ −p in (2.15)
and (3.2))

E | − p,m− p〉 = (m + 1− p)+| − p,m + 1− p〉
F | − p,m− p〉 = − qp (m)−| − p,m− 1− p〉. (3.8)

Note that one can obtain the Uq(s�2) action in Cp from that in C−p by a simple renormalization
of the canonical-basis vectors defining |p,m〉 := 1

(m)+! |p,m〉− for 0 � m � h − 1. The
corresponding extension of this transformation to the Verma module would be singular.
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The fact that C−p is equivalent to the dual of Cp follows again from an explicit calculation.
Indeed, for vpm = |p,m〉 ∈ Cp and fpm ∈ (Cp)′ such that 〈fpm, vpn〉 = δmn, applying (2.24)
one finds

Ěfpm = −q2(m + 1− p)+fpm+1 F̌ fpm = qp−2(m)−fpm−1.

To see the equivalence of this law with (3.8), it is enough to renormalize fpm = (−q2)m| −
p,m− p〉.

We shall be chiefly interested in the third pair of modules whose existence exploits
the fact that for vanishing EF and FE there is an additional freedom in choosing E or
F . We define from the outset the module Vp as an h-dimensional vector space spanned by
{|p,m〉, 0 � m � h − 1} such that |p, 0〉 is a LW vector and |p, h − 1〉 is a HW vector.
The basis vectors are assumed to satisfy (3.7) except that F |p, 0〉 = 0. A natural basis for
displaying its properties is given by

epm = ([m]!)−
1
2Em|p, 0〉 (= ([m]!)

1
2 q(

m

2)|p,m〉)
yielding

E epm = [m + 1]
1
2 epm+1 Fepm = [m]

1
2 [p −m]epm−1. (3.9)

The change of basis |p,m〉 → epm is non-singular in Vp since [m]! is positive for
0 � m � h − 1. However, the action of F implied by (3.9) would be only recovered
from (3.7) if we replace the periodicity condition |p,m + h〉 = |p,m〉 by the boundary
condition |p,−1〉 = 0. Alternatively, we can set

F |p,m〉 = (1− δ(m))q2−p(p −m)+|p,m− 1〉 E|p,m〉 = (m + 1)+|p,m + 1〉 (3.10)

then Vp can be continued to a periodic module, too, by extending the Kronecker δ periodically
(setting δ(m) = 1 for m = 0 mod h, δ(m) = 0 otherwise). Such an extension would result,
however, in just a direct sum of infinitely many equivalent h-dimensionalUq(s�2) submodules.
It is the realization (3.10) which justifies preserving the term ‘rational factorization’ for the
module Vp. It will prove more convenient to use (3.10) in the description of dual modules and
‘BRS operators’ below. The existence of a non-singular basis satisfying (3.9) makes manifest
the consistency of using the artificially looking factor (1− δ(m)) in the action of F (3.9). The
module Vp for 0 < p < h is dual to V2h−p(�V−p) where V2h−p can be defined as follows:

V2h−p = {|2h− p, h +m− p〉, 0 � m � h− 1}
E|2h− p, h +m− p〉 = (1− δ(h−m− 1))(m + 1− p)+|2h− p, h +m− p + 1〉
F |2h− p, h +m− p〉 = −qp(m)−|2h− p, h +m− p − 1〉.

(3.11)

(The range of values for m corresponds to the target space of the BRS operatorQh−p defined
below, see (3.18).) Although equations (3.10) and (3.11) make sense for 0 < p < 2h, we
shall assume 0 < p < h for both Vp and V2h−p, thus avoiding ambiguity. Note that for p = h
the two dual modules become equivalent and irreducible.

Remark 3.1. The modules Cp (p ∈ Z) are, unlike C±p and (Vp, V2h−p), self-conjugate in the
following sense. There exists an antiunitary operator0 in Cp of unit square which implements
the Hermitean conjugation (2.20). It acts on the canonical basis according to

0 |p,m〉 = qm(m+1−p) |p, p − 1−m〉. (3.12)

In verifying its properties we use the antilinearity of 0; for example

0E0|p,m〉 = 0qm(m+1−p)(p −m)+|p, p −m〉
= qm(m+1−p)(p −m)+q(p−m)(1−m)|p,m− 1〉
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= q2−p(p −m)+|p,m− 1〉 = F |p,m〉
0qH0|p,m〉 = qm(p−1−m)0qp−1−2m|p, p − 1−m〉

= q2m−p+1|p,m〉 = qH |p,m〉. (3.13)

In particular, 0 exchanges the HW vector |p, h− 1〉 with the LW one, |p, p〉 (≡ |p, p − h〉).
There is no operator with these properties mapping C+

p (C−p ) into itself since C+
p (C−p ) only admits

highest (lowest) weight vectors. One can, however, define a 0 which intertwines C+
p with C−p .

The representations described above are characterized by the structure of their singular
and cosingular vectors. The cyclic representation C−p contains two singular vectors, |p, 0〉− and
|p, p〉− and no cosingular ones, whereas in C+

p there are two cosingular, |p, 0〉+ and |p, p〉+,
and no singular vectors. Both representations are therefore irreducible.

The h-dimensional cyclic representations C±p and the modules Vp, V2h−p are, on the other
hand, indecomposable. Namely, Cp and Vp admit an (h− p)-dimensional invariant subspace
Ih−p while C2h−p and V2h−p contain a p-dimensional invariant subspace Ip. The lowest and
HW vectors of the (irreducible) invariant subspaces of Cp and C2h−p are

{|p, p〉, |p, h− 1〉} ∈ Ih−p {|2h− p, h− p〉, |2h− p, h− 1〉} ∈ Ip (3.14)

respectively; the vectors | ± p,±p〉 are the only singular vectors in C±p, and | ± p, 0〉 are the
cosingular ones. The labels of C±p can be given now the following meaning: they are equal
to the eigenvalue (mod 2h) of the operator 1−H on the cosingular vector or, equivalently, of
H − 1 applied to the corresponding singular vector (cf equations (3.3) and (3.14)).

It follows from (3.7) and (3.8) that the operators E and F are nilpotent in both C±p, and
Vp, V2h−p; for example

Eh = 0 = Fh (= qhH − (−1)p−1) (3.15)

and identical relations are true for Ě, F̌ and qȞ .
The irreducible Uq(s�2) representation in Ih−p is equivalent to the one in the quotient

C2h−p/Ip or V2h−p/Ip and vice versa. The partial equivalence of Cp (Vp) with C−p � C2h−p
(V−p � V2h−p) will be displayed by explicitly constructing the corresponding intertwining
mapsQp andQh−p which can be characterized by their invariance properties

XQp = QpX̌ X̌Qh−p = Qh−pX ∀X ∈ Uq(s�2). (3.16)

Proposition 3.2. The maps Qp : C−p → Cp and Qh−p : Cp → C2h−p are determined up to
m-independent factors from the Uq(s�2) invariance conditions (3.16) and are given by

Qp | − p,m− p〉 = (m)+!

(m− p)+!
|p,m〉 (3.17)

Qh−p |p,m〉 = (h +m− p)+!

(m)+!
|2h− p, h +m− p〉. (3.18)

They satisfy

KerQp = Ip = Im Qh−p (C−p � C2h−p) Im Qp = Ih−p = KerQh−p. (3.19)

Furthermore, Qp is the pth and Qh−p—the (h − p)th power of an operator Q acting on
⊕p∈ZCp as

Q|p,m〉 = (m + 1)+|p + 2,m + 1〉. (3.20)

The BRS operators (3.17) and (3.18) also act on Vp, V−p:

Qp : V−p → Vp Qh−p : Vp → V2h−p. (3.21)

Alternatively, one can define the intertwiners between the dual pairs of representations
using the following fact.
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Proposition 3.3. There exist (unique up to normalization) bilinear forms (1|2) on C±p and
on V±p for 0 < p < h invariant with respect to the transposition X → X′ of proposition 2.1

(1|X2) = (X′1|2). (3.22)

The form on Cp and on Vp vanishes on the (h − p)-dimensional Uq(s�2) invariant subspace
Ih−p with lowest and HW vectors |p, p〉 and |p, h− 1〉, respectively, while

(p,m|p,m′) = Np δmm′

(m)+!(p −m− 1)−!
for 0 � m � p − 1 or 0 � m′ � p − 1.

(3.23)

It satisfies the conjugation property

(p,m|p,m) = (p, p −m− 1|p, p −m− 1) for Np = Np. (3.24)

The corresponding relations for C−p and V−p are

(−p,m− p| − p,m′ − p) = N−p δmm′
(h− 1−m)−!(m− p)+!

(= 0 for 0 � m � p − 1 or 0 � m′ � p − 1, i.e. on Ip)
(3.25)

and, for p � m � h− 1

(−p, h− 1−m| − p, h− 1−m) = (−p,m− p| − p,m− p)
for N−p = N−p. (3.26)

(Note that in (3.22), in contrast to (2.24), X′ is in the same representation as X, not in the
contragradient one.)

Proof. The orthogonality for m �= m′ follows from qH = (qH )′. Applying (3.22) say, for
1 = |p,m + 1〉, 2 = |p,m〉 (resp.,1 = |−p,m−p + 1〉, 2 = |−p,m−p〉) andX = E,
one obtains recurrence relations solved by (3.23) and (3.25), respectively. �

The (degenerate) invariant bilinear forms on Cp and C−p are related, through the
intertwinersQh−p andQp, to the pairing between dual modules. One can prove the following
relations that can be used alternatively as a definition of the intertwiners:

〈f1, Q
pf2〉 = M−p (f1|f2) 〈Qh−pv1, v2〉 = Mp (v1|v2) (3.27)

where v1, v2 ∈ Cp, f1, f2 ∈ C−p andM±p are m-independent.
We can now prove the equivalence of (3.16) and (3.27):

〈f1, XQ
p f2〉 = 〈X̌′ f1, Q

p f2〉 = M−p (X̌′ f1 | f2)

= M−p (f1|X̌ f2) = 〈f1, Q
p X̌ f2〉 (3.28)

〈X̌ Qh−p v1, v2〉 = 〈Qh−p v1, X
′ v2〉 = Mp (v1|X′ v2)

= Mp (X v1|v2) = 〈Qh−p X v1, v2〉. (3.29)

We have used (2.24), (3.27) and the involutivity of the transposition (2.19) (note also that
(X′)ˇ = (X̌)′ ≡ X̌′).

From (3.17), (3.18), (3.27) and (3.32) it follows that

〈− p,m− p|p,m〉 = (−1)mq1−p+2mN−p ≡ (−1)m(q2ρ∨)mmN−p (3.30)

〈2h− p, h +m− p|p,m〉 = (−1)m−pq1−p+2mNp ≡ (−1)m−p(q2ρ∨)mmNp (3.31)

for

Mp = qp−h−1 (h− 1)+! M−p = q1−p (h− 1)−!. (3.32)



Indecomposable Uq(s�n) modules for qh = −1 4867

To derive (3.30)–(3.32) one uses relations (3.17), (3.18) and

(h− k)±! = (h− 1)±!(−q±2)k−1

(k − 1)∓!
. (3.33)

Note that in the limit q → 1 one gets the well known factor (−1)m relating the covariant and
the contravariant canonical bases of s�2 modules ([22], equations (9)–(125)).

Equating the two expressions one obtains the relation

N−p = (−1)pNp (3.34)

consistent with the reality of N±p.

Remark 3.4. The modules Cp and Vp also admit an invariant Hermitean form obtained by
using the Hermitean conjugation X → X∗ of proposition 2.1 instead of the transposition. It
can be demonstrated to be positive semidefinite and to majorize the bilinear form. There is a
natural choice of normalization for which the (Hermitean) norm square of the basis vectors is
given by

‖|p,m〉‖2 = |(p,m|p,m)| = |Np|
[m]![p −m− 1]!

for 0 < p � h. (3.35)

The following statement allows one to interpret the operator Q as a generalized exterior
derivative [23] or ‘BRS operator’ [24] with a trivial cohomology.

Proposition 3.5. The operatorQ (3.20) satisfies

Qh = 0 = QpQh−p = Qh−pQp (3.36)

so that the sequence of Uq(s�2) modules and intertwiners

· · · Qp−→ Cp−2h
Qh−p−→ C−p Qp−→ Cp Qh−p−→ C2h−p

Qp−→ · · · (3.37)

is a complex. Furthermore, it is exact, i.e. all cohomology groups are trivial (see
equation (3.19)).

In fact, the triviality of the cohomologies is, according to [23], a consequence of the
existence of an operator K : Cp+2 → Cp which, together withQ (3.20) satisfies

KQ− q2QK = 1I Kh = 0. (3.38)

It is given by

K|p + 2,m + 1〉 = (1− δh−1m(mod h))|p,m〉 (⇒ K|p, 0〉 = 0
)
. (3.39)

4. 2h-dimensional indecomposable representations of Uq(s�2))

The question we address in this section is: can we use the intertwining map Qh−p : Cp →
C2h−p to derive raising and lowering operators e and f on Cp ⊕ C2h−p of the form

e = E + α(qȞ , qp)ĚQh−p ⊕ Ě f = F + β(qȞ , qp)F̌Qh−p ⊕ F̌ (4.1)

q±h = q±(H⊕Ȟ ), where, for X standing for an endomorphism of Cp which represents an
element of Uq(s�2), X̌ stands for the corresponding endomorphism of C2h−p? This would
equip the direct sum Cp ⊕ C2h−p with the structure of an indecomposable Uq(s�2) module.

It turns out that the problem, as stated, has no solution. Its study, however, did lead us to a
(slightly more general) construction of a 2h-dimensional indecomposableUq(s�2)module Dp

such that C2h−p appears as an invariant subspace of Dp while Cp is isomorphic to the quotient
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space Dp/C2h−p. Trying to interpret this result as a realization of the construction (4.1), we
would find out that the coefficients α and β are singular functions of their arguments whose
poles, however, are compensated by zeros in the kernel ofQh−p. We thus end up with operators
e and f of a form suggested but not literally given by (4.1). Let us reproduce this heuristic
argument.

We look for functions αm(p) and βm(p) such that the operators e and f, acting on the
canonical basis in Cp as

e|p,m〉 = (m + 1)+|p,m + 1〉 + αm(p)
(h +m− p + 1)+!

(m)+!
|2h− p,m− p + 1〉

f|p,m〉 = −qp+2−2m((m− p)+|p,m− 1〉 + βm(p)
(h +m− p)+!

(m− 1)+!
|2h− p,m− p − 1〉)

(4.2)

satisfy the commutation relation ([e, f]− [h]) Cp = 0. This yields recurrence relations for
αm (= αm(p)) and βm

q2(αm−1 + βm)(m)+(m− p)+ = (αm + βm+1)(m + 1)+(m− p + 1)+. (4.3)

These equations have a singular solution:

αm = α(p)

[m + 1][m− p + 1]

(
= q2m−pα(p)
(m + 1)+(m− p + 1)+

)
βm = β(p)

[m][m− p]
. (4.4)

The product of αm and βm with the ratio of factorials in (4.2) can, however, be given an
unambiguous meaning; we obtain

e|p,m〉 = (m + 1)+|p,m + 1〉 + α(p)q2m−p (h +m− p)+!

(m + 1)+!
|2h− p,m− p + 1〉

f|p,m〉 = q2−p(p −m)+|p,m− 1〉− β(p)(h +m− p − 1)+!

(m)+!
|2h− p,m− p − 1〉.

(4.5)

The ratio in the second terms can be defined for a vanishing denominator using the following
general formula for q-binomial coefficients at roots of 1 ([25]):(
m0 + hm1

n0 + hn1

)
+

=
(
m0

n0

)
+

(
m1

n1

)
q=1

for m1 ∈ Z n1 ∈ Z+ 0 � m0 n0 � h− 1.

(4.6)

This gives, for example, (2h−1−p)+!
(h)+! = (h − p − 1)+! for 0 < p < h. Then the second term

in the expression for e|p,m〉 vanishes for p � m � h− 2. For p = h the second term in the
right-hand side of both equations (4.5) should disappear. A convenient choice for α(p) and
β(p) which satisfies this condition is

α(p) = 1

(h− p − 1)+!
= β(p). (4.7)

Inserting this into (4.5) we find

e |p,m〉 = (m + 1)+ |p,m + 1〉 + q2m−p
(
h +m− p
m + 1

)
+

|2h− p,m− p + 1〉

f |p,m〉 = q2−p (p −m)+ |p,m− 1〉−
(
h +m− p − 1

m

)
+

|2h− p,m− p − 1〉
(4.8)

where
(
N

n

)
+

is the q-binomial coefficient (N)+!
(n)+!(N−n)+! which is defined to vanish for N < n.

Completing (4.8) with

e |2h− p,m− p〉 = Ě|2h− p,m− p〉 = (m + 1− p)+|2h− p,m + 1− p〉
f |2h− p,m− p〉 = F̌ |2h− p,m− p〉 = −qp(m)−|2h− p,m− p − 1〉 (4.9)
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we find

(fe − [m + 1][h−m− 1])

( |p,m〉
|2h− p,m− p〉

)

=
(

0 −2(h− p)+
(
h+m−1
m

)
+

0 0

) ( |p,m〉
|2h− p,m− p〉

)

(fe − [m + 1][h−m− 1])2 Dp = 0.

(4.10)

We thus arrive at the following result.

Proposition 4.1. The 2h-dimensional vector space Dp with basis

{|p,m〉 ∈ Cp, |2h− p,m− p〉 ∈ C2h−p, mmod h}
equipped with the Uq(s�2) action (4.8), (4.9) is an indecomposable Uq(s�2) module with the
following chain of invariant subspaces:

Ip ⊂ C2h−p ⊂ C̃2h−p ⊂ Dp. (4.11)

Here Ip is thep-dimensional invariant subspace of the h-dimensional cyclic subrepresentation
C2h−p with a lowest and a HW vector, |2h−p, h−p〉 and |2h−p, h−1〉, respectively. C̃2h−p
is spanned by C2h−p and Ih−p. We further have the following identifications (in the notation
of section 3) of the cyclic representation Cp and of the irreducible subquotient Cp/Ih−p:

Ih−p ⊂ Cp � Dp/C2h−p Cp/Ih−p � Dp/C̃2h−p. (4.12)

The Casimir invariant C2 (2.15) is indecomposable in Dp, the analogue of the first
equation (2.15) being

(
C2 − 2

[
p − 1

2

] [
p + 1

2

])2

Dp = 0. (4.13)

The same construction applies to the pair (C−p, Cp) which is combined in an indecomposable
module D−p with composition series Ih−p ⊂ Cp ⊂ C̃p ⊂ D−p where C̃p is (h+p)-dimensional
and C−p � D−p/Cp.

Remark 4.2. There are several inequivalent 2h-dimensional indecomposable Uq(s�2)

modules. For instance, one can choose either α(p) or β(p) equal to zero. The modules
Dp are singled out as being more symmetric. Indeed, it is only for Dp that one can extend the
antiunitary operator 0 of remark 3.1.

Remark 4.3. One can define in a similar way 2h-dimensional indecomposable representations
Wp combining the pairs (Vp,V2h−p). The Fröhlich–Kerler construction ([17], section 5.3) is
then reproduced by taking β(p) = 0, α(p) �= 0.

Concluding the n = 2 case, we would like to emphasize the following. As pointed out
in the Introduction, the motivation of [15–17] for studying indecomposable 2h-dimensional
Uq(s�2) representations has been their appearance in the tensor-product decomposition of
physical ones. (A general study of tensor-product expansions of IR of Uq(s�2) for q a root
of unity is contained in [18].) We are advocating here the opposite point of view, introducing
indecomposable modules from the outset. The physical ones then appear as appropriate
subquotients.
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5. Generalization to Uq(s�n). Indecomposable Uq(s�3) modules

One way to write down the canonical basis {|p,m〉, 0 � m � h − 1} in Vp that readily
generalizes to Uq(s�n) consists of acting by a basis of raising operators of the enveloping
algebra on the LW vector |p, 0〉

|p,m〉 = E(m) |p, 0〉 E(m) := Em

(m)+!
(for m < h) F |p, 0〉 = 0. (5.1)

For Uq(s�n) a straightforward extension of (5.1) is provided by substituting for {E(m)} the
PBW basis in the subalgebra U+

q of raising operators. It is labelled by
(
n

2

)
quantum numbers

mij , 1 � i � j � n− 1, the powers of Ei (≡ Eii) and Eji ; here Eji is defined by continuing
inductively the definition (2.3) of Ei+1 i

Ej+1 i = Eji Ej+1 − q Ej+1 Eji for 1 � i � j � n− 2. (5.2)

The case n = 3 is representative, on one hand, since it shares the main complication in the
passage from n = 2 to n > 2, i.e., the appearance of weights of multiplicity higher than 1; on
the other hand, it still allows an explicit description since the ‘canonical’ [25] (or ‘crystal’ [26])
basis consists of monomials in Ei just for n � 3. We shall, therefore, proceed in extending
the main results of section 3 to this case.

5.1. Finite-dimensional factor algebra of the Borel subalgebra UEq . LW Uq(s�3) modules

UEq can be viewed as a bigraded associative algebra

UEq = ⊕λ1,λ2∈Z+
UEq (λ1, λ2) UEq (λ1, λ2) = Span {qm1H1+m2H2Eα1E

β

21E
γ

2 }
α, β, γ ∈ Z+ α + β = λ1 β + γ = λ2 ma ∈ Z

(5.3)

so that UEq (0, 0) is the group algebra of the Cartan subgroup of Uq(s�3) generated by

q±Ha , a = 1, 2. The linear span of the PBW basis {Eα1Eβ21E
γ

2 } in each UEq (λ1, λ2) is taken
with operator-valued coefficients belonging to UEq (0, 0) and satisfying

qHa UEq (λ1, λ2) q
Ha = q3λa−λ1−λ2 UEq (λ1, λ2) a = 1, 2. (5.4)

For each dominant weight p = (p12, p23) we define an Uq(s�3) module Vp by

Vp = UEh |p; 0, 0, 0〉 UEh = ⊕h−1
λ1,λ2=0U

E
q (λ1, λ2) Fa|p; 0, 0, 0〉 = 0 (5.5)

where |p; 0, 0, 0〉 is the LW vector in the PBW basis defined by

|p;α, β, γ 〉 = E
(α)
1 E

[β]
21 E

(γ )

2 |p; 0, 0, 0〉
α, β, γ � 0 α + β � h− 1 β + γ � h− 1

(5.6)

with X[β] ≡ Xβ

[β]! . The normalization of the basis vectors is chosen in such a way that the
periodicity of the eigenvalues of the Cartan generators

(qH1 − q2α+β−γ−p23+1)|p;α, β, γ 〉 = 0 = (qH2 − q−α+β+2γ−p12+1)|p;α, β, γ 〉 (5.7)

summed up in the substitution rule

(α, β, γ )→ (α + ε1h, β + ε2h, γ + ε3h) εi = ±1 i = 1, 2, 3 (5.8)

corresponds to the periodicity of the expressions for the action of Ea and Fa (a = 1, 2) on the
PBW basis
E1 |p;α, β, γ 〉 = (α + 1)+ |p;α + 1, β, γ 〉
E2 |p;α, β, γ 〉 = qα (qβ (γ + 1)+ |p;α, β, γ + 1〉

−(1− δα0)[β + 1] |p;α − 1, β + 1, γ 〉)
E21 |p;α, β, γ 〉 = qα [β + 1] |p;α, β + 1, γ 〉

(5.9)
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F1 |p;α, β, γ 〉 = q1+α[p23 − α − β + γ ] (1− δα0)|p;α − 1, β, γ 〉
+qβ−p23 [γ + 1](1− δβ0) |p;α, β − 1, γ + 1〉

F2 |p;α, β, γ 〉 = q1−γ [p12 − γ ](1− δγ 0) |p;α, β, γ − 1〉
− qp12−2γ (α + 1)+(1− δβ0) |p;α + 1, β − 1, γ 〉

F12 |p;α, β, γ 〉 = qα[p13 − α − β − γ − 1](1− δβ0) |p;α, β − 1, γ 〉
− qp23+1−2α−β[γ − p12] (1− δα0)(1− δγ 0)|p;α − 1, β, γ − 1〉.

(5.10)

The simplest way to verify the consistency of these relations is to use, following the discussion
of the n = 2 case (equations (3.9)), the non-periodic (but still regular) basis

ep(α, β, γ ) =
(
[α + β]![β + γ ]!

)− 1
2 Eα1E

β

21E
γ

2 |p; 0, 0, 0〉 (5.11)

such that

E1 ep(α, β, γ ) =
√

[α + β] ep(α + 1, β, γ )

E2ep(α, β, γ ) =
√

[β + γ ](qβ−αep(α, β, γ + 1)− q[α]ep(α − 1, β + 1, γ ))
(5.12)

F1 ep(α, β, γ ) = q2 [α]√
[α + β]

[p23 − α − β + γ ] ep(α − 1, β, γ )

+qβ−γ−p23
[β]√

[α + β]
ep(α, β − 1, γ + 1)

F2 ep(α, β, γ ) = [γ ]√
[β + γ ]

[p12 − γ ] ep(α, β, γ − 1)

− qp12−γ [β]√
[β + γ ]

ep(α + 1, β − 1, γ ).

(5.13)

It is evident that the coefficients in the right-hand sides of (5.13) are defined unambiguously,
since the expressions under the square roots are non-negative, and, for example

lim
α→0

lim
β→0

[α]2

[α + β]
= 0 = lim

β→0
lim
α→0

[α]2

[α + β]
.

Relations (5.9) and (5.10), on the other hand, have the advantage of admitting a (periodic)
continuation to all the integer labels α, β, γ .

In order to find the dimension d3(h) of each Vp, we compute the dimensions of the
corresponding weight spaces

Vp(λ1, λ2) = UEq (λ1, λ2) |p; 0, 0, 0〉 dim Vp(λ1, λ2) = min(λ1, λ2) + 1. (5.14)

As a result, we find

d3(h) := dim Vp =
h−1∑
λ=0

(λ + 1)(2(h− λ− 1) + 1) = h(h + 1)(2h + 1)

6
. (5.15)

One way of identifying the invariant subspaces of Vp is through the construction of singular
vectors. As we shall see shortly, the latter need not belong to the set of PBW basis vectors;
in general, they appear as linear combinations of basis vectors of a given weight subspace
UEq (λ1, λ2)|p; 0, 0, 0〉. The resulting complication is resolved by passing to the canonical
basis which does contain the LW (and HW) vectors of interest.

The canonical basis in Vp will be defined by acting on the LW vector |p; 0, 0, 0〉 by two
sets of monomials

E
(m)
1 E

(k)
2 E

(�)
1 E

(m)
2 E

(k)
1 E

(�)
2 m, k, � ∈ Z+ k � � +m
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which together provide a basis inU+
q . One proves (see [25]) that the Serre relations (2.3) imply

the following expressions for these monomials in terms of the PBW basis

qk�E
(m)
1 E

(k)
2 E

(�)
1 =

�∑
j=0

(−1)j
(
m + �− j

m

)
+

E
(m+�−j)
1 E

[j ]
21 E

(k−j)
2

qk�E
(�)
2 E

(k)
1 E

(m)
2 =

�∑
j=0

(−1)j
(
m + �− j

m

)
+

E
(k−j)
1 E

[j ]
21 E

(m+�−j)
2 .

(5.16)

It follows from (5.16) that

E
(m)
1 E

(k)
2 E

(�)
1 = E(�)2 E

(k)
1 E

(m)
2 for k = m + �. (5.17)

The inverse relations are

E
(α)
1 E

[β]
21 E

(γ )

2 =
β∑
σ=0

Xσ (α, β, γ )E
(β−σ)
2 E

(α+β)
1 E

(γ+σ)
2 (for α � γ )

E
(α)
1 E

[β]
21 E

(γ )

2 =
β∑
σ=0

Xσ (γ, β, α)E
(α+σ)
1 E

(β+γ )
2 E

(β−σ)
1 (for α � γ )

(5.18)

where

Xσ (α, β, γ ) = (−1)β−σ
(
γ + σ

γ

)
+

qσ(σ−1)+(β−σ)(α+β). (5.19)

We are now ready to define a canonical basis in Vp. It consists of two pieces

qklE
(m)
1 E

(k)
2 E

(�)
1 |p; 0, 0, 0〉 := |p;m, k, �〉(1)

qklE
(�)
2 E

(k)
1 E

(m)
2 |p; 0, 0, 0〉 := |p; �, k,m〉(2) (5.20)

(0 � �,m, � +m � k � h− 1) whose intersection is spanned by

|p;m, � +m, �〉(1) = |p; �, � +m,m〉(2). (5.21)

Using (5.4) and (5.5) we find

(qH1 − q2m+2�−k+1−p23) |p;m, k, �〉(1) = 0
(qH1 − q2k−m−�+1−p23) |p; �, k,m〉(2) = 0
(qH2 − q2m+2�−k+1−p12) |p; �, k,m〉(2) = 0
(qH2 − q2k−m−�+1−p12) |p;m, k, �〉(1) = 0

(5.22)

E1 |p;m, k, �〉(1) = (m + 1)+ |p;m + 1, k, �〉(1) for k > m + �
E1 |p; �, k,m〉(2) = (k − � + 1)+|p; �, k + 1,m〉(2) + q2(k−�+1)(1− δ�0)(m + 1)+

×|p; �− 1, k + 1,m + 1〉(2) for k � m + �
E2 |p;m, k, �〉(1) = qm−�(k −m + 1)+|p;m, k + 1, �〉(1)

+qm+�(1− δm0)(� + 1)+|p;m− 1, k + 1, � + 1〉(1) for k � m + �
E2 |p; �, k,m〉(2) = qk(� + 1)+|p; � + 1, k,m〉(2) for k > m + �

(5.23)

F1 |p;m, k, �〉(1) = q2−p23−k+2�(1− δm0)(p23 −m + k − 2�)+|p;m− 1, k, �〉(1)
+q2−p23+k(1− δ�0)(p23 − �)+|p;m, k, �− 1〉(1) for k � m + �

F1 |p; �, k,m〉(2) = q2−p23+�−m(p23 − k +m)+|p; �, k − 1,m〉(2) for k > m + �
F2 |p; �, k,m〉(2) = q2−p12+2m(1− δ�0)(p12 − � + k − 2m)+|p; �− 1, k,m〉(2)

+q2−p12(1− δm0)(p12 −m)+|p; �, k,m− 1〉(2) for k � m + �
F2 |p;m, k, �〉(1) = q2−p12(p12 − k + �)+|p;m, k − 1, �〉(1) for k > m + �.

(5.24)

Details of the calculations can be found in the appendix.
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The dimension d3(h) (5.15) can also be recovered by a canonical-basis computation; we
have

d3(h) = 2
h−1∑
λ1=0

λ1−1∑
λ2=0

(λ2 + 1) +
h−1∑
λ=0

(λ + 1) =
h∑
�=1

�2 = h(h + 1)(2h + 1)

6
. (5.25)

Remark 5.1. Consider the algebra UE(h) obtained from UEq by factoring the latter with respect
to the relations Eha = 0 = [hH ] and adding the new elements E(h)a (of [25]) such that

[qHa , E(h)a ] = 0 [Ea,E
(h)
a ] = 0 [qH3−a , E(h)a ]+ = 0 a = 1, 2. (5.26)

We can define a periodic extension of Vp if we impose the relations

[E3−a, E(h)a ]+Vp = 0 (E
(h)
2 E

(h)
1 − (−1)hE(h)1 E

(h)
2 )Vp = 0 [Fa,E

(h)
b ]Vp = 0 (5.27)

and the periodicity condition((
E(h)a

)2 − 1
)Vp = 0. (5.28)

(In view of (4.6), (E(h)a )
2 = 2E(2h)a .) Indeed, there is an ideal J(h) of UE(h) generated by

[E1, E
(h)
2 ]+ [E2, E

(h)
1 ]+ E

(h)
2 E

(h)
1 − (−1)hE(h)1 E

(h)
2 .

Then equations (5.18) and (5.19) imply that, in UE(h)/J(h)

E
(h−β)
1 E

[β]
21 =

β∑
σ=0

qσ(σ−1)E
(β−σ)
2 E

(h)
1 E

(σ)
2 =

β∑
σ=0

(−1)σ qσ(σ−1)

(
β

σ

)
+

E
(β)

2 E
(h)
1 = 0 (5.29)

for any β > 0, where we are using the relation E(h)1 E
(σ)
2 = (−1)σE(σ)2 E

(h)
1 and the identity

β∑
σ=0

(−1)σ qσ(σ−1)

(
β

σ

)
+

= δβ0 for β ∈ Z+ (5.30)

(essentially, a q-version of (1− 1)β = 0 for β > 0). It follows, in particular, that

E
[h]
21 |p; 0, 0, 0〉 = 0. (5.31)

Remark 5.2. The space Vp can also be defined in terms of the PBW basis for Uq(s�n) with
n > 3. The basis involves

(
n

2

)
exponents αij = αji ∈ Z+ satisfying

∑
j αij � h − 1. The

dimension dn(h) of Vp is a polynomial in h of degree
(
n

2

)
; for n = 4 it is given by

d4(h) = 1

6!
h(h + 1)2(h + 2)(h + 3)(11h + 4). (5.32)

5.2. BRS intertwiners, singular vectors and invariant subspaces

The presence of two (equivalent) bases in Vp is an asset: it enables us to use for each problem
the one which is better adapted to its solution. We shall illustrate this fact by writing down the
BRS intertwiners

Qp : VwLp → Vp Qh+wLp : Vp → Vh+wLp (5.33)

in the PBW basis and the singular vectors in Vp in the canonical basis.
Let us start withQp. From qHi invariance (5.7) it follows that

Qp|wLp;α, β, γ 〉 =
∑
ρ

fρ(α, β, γ ;p)|p;α + ρ, β − ρ + p13, γ + ρ〉. (5.34)
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The E1 and E21 invariance (cf (5.9)) implies

fρ(α, β, γ ;p) = q(α+β)ρ

[
β + p13 − ρ

β

] [
α + ρ
α

]
fρ(0, 0, γ ;p). (5.35)

To find fρ(0, 0, γ ;p) ≡ fρ(γ ;p), it is convenient to use the equations following from E2 and
F1 invariance since they contain the same triples of various ρ and γ combinations. Applying
E2, one gets

qβ (γ + 1)+ fρ(α, β, γ + 1;p)− q−β (β + 1)+ fρ+1(α − 1, β + 1, γ ;p)
= qβ−2ρ+p13(γ + ρ + 1)+fρ(α, β, γ ;p)
− q−β−p13 (β − ρ + p13)+ fρ+1 (α, β, γ ;p) (5.36)

whereas F1 invariance implies

q−α−β−p12+1 [γ − α − β − p12] fρ+1(α − 1, β, γ ;p)
= q−ρ−α−β−p12 [γ + ρ − α − β − p12 + 1] fρ+1(α, β, γ ;p)

+ q−ρ [γ + ρ + 1] fρ(α, β, γ ;p)− [γ + 1] fρ(α, β − 1, γ + 1;p). (5.37)

After some algebra one obtains the following simple and selfconsistent (e.g. not containing α
and β) recurrence relations for the function fρ(γ ;p):

fρ+1(γ ;p) = − (γ + ρ + 1)+
(γ + ρ − p12 + 1)+

fρ(γ ;p)

fρ(γ + 1;p) = [γ + ρ + 1][γ + p23 + 1]

[γ + 1][γ + ρ − p12 + 1]
fρ(γ ;p).

(5.38)

Solving the recurrence relations (5.38) for fρ(γ ;p) and putting the latter in (5.35), one can
bring the final result for fρ(α, β, γ ;p) to the form

fρ(α, β, γ ;p) = (−q(α+β+p12))ρ
[
β + p13 − ρ

β

] [
α + ρ
α

] [
γ + ρ
p12

] [
γ + p23

p23

]
f (p)

= (−q(α+β+p12))ρ
[α + ρ]![β + p13 − ρ]![γ + ρ]![γ + p23]!

[ρ]![α]![β]![γ ]![p13 − ρ]![γ − p12 + ρ]!

f (p)

[p12]![p23]!
.

(5.39)

One sees that the effective summation range over ρ in (5.34) (for 0 < p13 < h) is from
max (p12 − γ, 0) to min (p13, h− α, h− γ ).

One can find quite analogously the corresponding expression for the action Qh+wLp. It
turns out that

Qh+wLp|p;α, β, γ 〉 =
∑
ρ

fρ(α, β, γ ;h− p23, h− p12)

×|wLp;α + ρ, β + 2h− p13 − ρ, γ + ρ〉. (5.40)

It is easy to see that successive application ofQp andQh+wLp gives zero, i.e.

QpQh+wLp = 0 = Qh+wLpQp. (5.41)

This follows from the explicit form of the coefficient functions fρ(α, β, γ ;p). Indeed (for
f (p) = 1)

Qh+wLpQp|h + wLp;α, β, γ 〉 =
∑
σ

|wLp;α + σ, β + 2h− σ, γ + σ 〉

×
∑
ρ

fρ(α, β, γ ;p)fσ−ρ(α + ρ, β + p13 − ρ, γ + ρ;h− p23, h− p12)

(5.42)
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and

fρ(α, β, γ ;p) fσ−ρ(α + ρ, β + p13 − ρ, γ + ρ;h− p23, h− p12)

= [α + σ ]![β + 2h− σ ]![γ + σ ]![γ + ρ + h− p12]!

[ρ]![α]![β]![γ ]![γ + ρ − p12]![σ − ρ]![p12]![p23]![h− p12]![h− p23]!

× [γ + p23]!

[p13 − ρ]![2h− p13 + ρ − σ ]![γ + σ − h + p23]!
≡ 0 (5.43)

(due to factorials of integers greater or equal to h in the numerator, or factorials of negative
integers in the denominator).

For similar reasons

QpQh+wLp|p;α, β + p13, γ 〉 =
∑
σ

|h + p;α + σ, β + p13 − σ, γ + σ 〉

×
∑
µ

fµ(α, β + p13, γ ;h− p23, h− p12)fσ−µ(α + µ, β + 2h− µ, γ + µ;p)

(5.44)

also vanishes identically.
One should expect the vector Qp|wLp; 0, 0, 0〉 ∈ Vp to be singular. In view of (5.34)

and (5.39), it can be shown to be proportional to

|sp〉 =
p13∑
α=p12

(−1)α
(
α

p12

)
+

|p;α, p13 − α, α〉. (5.45)

The dual formulae are

|sh+wLp〉 =
2h−p13∑
α=h−p23

(−1)α
(

α

h− p23

)
+

|h + wLp;α, 2h− p13 − α, α〉 ∼ Qh+wLp|p; 0, 0, 0〉.

(5.46)

Applying (5.10), one can check that the weight vectors (5.45) and (5.46) indeed satisfy

Fa |sp〉 = 0 = Fa |sh+wLp〉 a = 1, 2. (5.47)

The expressions for the singular vectors become particularly elegant in the canonical basis
(a similar remark was made in [21]). Noting that for m + � = k equations (5.16) reduce to

qk�E
(k−�)
1 E

(k)
2 E

(�)
1 ≡ qk�E(�)2 E

(k)
1 E

(k−�)
2 =

�∑
j=0

(−1)j
(
k − j
m

)
+

E
(k−j)
1 E

[j ]
21 E

(k−j)
2 (5.48)

and substituting m = p12, � = p23, k = p13, j = p13 − α, one obtains

qp13p23 E
(p12)

1 E
(p13)

2 E
(p23)

1 ≡ qp13p23 E
(p23)

2 E
(p13)

1 E
(p12)

2

= (−1)p13

p13∑
α=p12

(−1)α
(
α

p12

)
+

E
(α)
1 E

[p13−α]
21 E

(α)
2 . (5.49)

Hence, for |sp〉 ∈ Vp we have

|p;p12, p13, p23〉(1) ≡ |p;p23, p13, p12〉(2) = (−1)p13 |sp〉. (5.50)

The identification of invariant subspaces and quotients of Vp is facilitated by the knowledge
of the invariant Hermitean form (which majorizes the invariant bilinear form; cf remark 3.4).
Noting that (E(m)a )∗ = 1

(m)−!F
m
a and observing the identity (m)+(m)− = [m]2, we can write

the following expression for the norm square of canonical-basis vectors:

‖|p;m, k, �〉(1)‖2 = 〈p; 0, 0, 0|F [�]
1 F

[k]
2 F

[m]
1 E

[m]
1 E

[k]
2 E

[�]
1 |p; 0, 0, 0〉 (5.51)

and a similar expression for 1 ↔ 2 and � ↔ m which is completely determined if we set
〈p; 0, 0, 0|p; 0, 0, 0〉 = 1 (for 1 < p13 < h).
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Remark 5.3. We can surely also compute the invariant bilinear and Hermitean forms in the
PBW basis. For instance, one can derive the relation

〈p;α, β, γ |p;α, β, γ 〉 =
α∑

σ=max(α−β,0)
(−1)α+σ

[
α + γ − σ

γ

]2

×
[
p23 + γ − β − 1

σ

] [
p13 + σ − α − γ − 2

β − α + σ

] [
p12 − 1
α + γ − σ

]
. (5.52)

Here the advantage of the canonical basis becomes manifest: for a singular vector of the
type (5.50) the vanishing of its norm square (5.51) is an immediate consequence of (5.47). By
contrast, the (bilinear) squares (5.52) of PBW basis vectors entering the expansion (5.45) are
not, in general, zero; only the resulting sum of inner products should vanish.

A calculation similar to the (canonical basis) computation of d3(h) yields the dimension
of the image ofQp in Vp

dim (Im Qp) = dim (KerQh+wLp) = 1
6 (h− p13)(h− p13 + 1)(2h− 2p13 + 1). (5.53)

This invariant subspace lies in the kernel of the Hermitean form on Vp but does not exhaust it.
A systematic study of the structure of invariant subspaces and subquotients of Vp is left

for future work.

6. Concluding remarks

The preceding discussion being rather technical in nature, it should be helpful to sum up the
main results adding on the way some new emphases.

We are studying indecomposable representations of Uq(s�n)which are trivial on the ideal
generated by

Eha F ha [hHa] a = 1, . . . , n− 1 h ∈ N h > n (6.1)

for q a 2hth root of unity. The resulting finite-dimensional factor algebra has a surprisingly
rich structure of indecomposable representations that parallel the structure of indecomposable
Kac–Moody modules. Different dual pairs of h-dimensional Uq(s�2) representations of
this kind are studied in section 3. The most economic construction deals with a pair of
indecomposable modules Vp and V2h−p which already exhibit the counterpart of the Bernard–
Felder cohomology we are interested in. The rather complete analysis of the structure of
the h-dimensional representations of Uq(s�2) in Vp and of the intertwining (‘BRS’) maps
Qh−p : Vp → V2h−p, performed in section 3, allowed us to reconstruct (in section 4) the
2h-dimensional indecomposable modules Wp studied earlier in [15–18].

It is remarkable that the Uq(s�n) counterparts (Vp, Vh+wLp) of the above dual pairs can
be constructed effectively for any n using the PBW basis. This is demonstrated by an explicit
calculation in section 5 for n = 3. It is shown that Lusztig’s canonical basis (which in this
case also consists of monomials in the raising operators) provides better control over singular
vectors. A detailed study of the structure of invariant subspaces and subquotients of Vp,
however, has only been performed for n = 2.
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Appendix

Here we give the details, for n = 3, of the most involved calculation in the transition from
PBW to the canonical basis that contains all the needed technical steps. It is assumed that
k � m + �.

E2 E
(m)
1 E

(k)
2 E

(�)
1 |p; 0, 0, 0〉 = q̄k�

�∑
j=0

(−1)j
(
m + �− j

m

)
+

E2|p;m + �− j, j, k − j〉

= q̄m+�(k+1)
�∑
j=0

(−1)j
(
m + �− j

m

)
+

×{q2j (k − j + 1)+|p;m + �− j, j, k − j + 1〉
−(j + 1)+|p;m + �− j − 1, j + 1, k − j〉}

= q̄m+�(k+1)
�+1∑
j=0

(−1)j |p;m + �− j, j, k − j + 1〉

×
{(
m + �− j

m

)
+

q2j (k − j + 1)+ +

(
m + � + 1− j

m

)
+

(j)+

}

= q̄m+�(k+1)
�+1∑
j=0

(−1)j

×
{(
m + �− j

m

)
+

q2j (k − j + 1)+ +

(
m + � + 1− j

m

)
+

(j)+

}

×
j∑
n=0

(−1)j−n
(
m + �− j + n

n

)
+

×qn(n−1)+(j−n)(k+1)E
(m+�−j+n)
1 E

(k+1)
2 E

(j−n)
1 |p; 0, 0, 0〉

(now we change the summation index n by j − n)

= q̄m+�(k+1)
�+1∑
j=0

(−1)j

×
{(
m + �− j

m

)
+

q2j (k − j + 1)+ +

(
m + � + 1− j

m

)
+

(j)+

}

×
j∑
n=0

(−1)n
(
m + �− n
j − n

)
+

q(j−n)(j−n−1)+n(k+1)

×E(m+�−n)
1 E

(k+1)
2 E

(n)
1 |p; 0, 0, 0〉

(here we can change the upper summation limit in the sum over n from j to � + 1 since the

binomial coefficient
(
m+�−n
j−n

)
+

is automatically zero when n � j ; after that we can exchange
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the orders of summation over n and j )

= q̄m+�(k+1)
�+1∑
n=0

(−1)nqn(k+1)
�+1∑
j=0

(−1)j
(
m + �− n
j − n

)
+

q(j−n)(j−n−1)

×
{(
m + �− j

m

)
+

q2j (k − j + 1)+ +

(
m + � + 1− j

m

)
+

(j)+

}

×E(m+�−n)
1 E

(k+1)
2 E

(n)
1 |p; 0, 0, 0〉. (A.1)

Let us now compute the sum over j :

�+1∑
j=0

(−1)j
(
m + �− n
j − n

)
+

q(j−n)(j−n−1)

×
{(
m + �− j

m

)
+

q2j (k − j + 1)+ +

(
m + � + 1− j

m

)
+

(j)+

}

=
�+1∑
j=0

(−1)j q(j−n)(j−n−1) (m + �− n)+!

(m)+!(j − n)+!(� + 1− j)+!

×{
q2j (k + 1− j)+(� + 1− j)+ + (j)+(m + � + 1− j)+

}
(crucial observation:

q2j (k + 1− j)+(� + 1− j)+ + (j)+(m + � + 1− j)+
= (m + � + 1− j)+(k −m + 1)+ + q2(k−m+1)(m)+(�− k +m)+

the second expression being ‘q-linear’ in j )

= (m + �− n)+!

(m)+!(� + 1− n)+!

�+1∑
j=0

(−1)j q(j−n)(j−n−1)

(
� + 1− n
j − n

)
+

×{
(m + � + 1− j)+(k −m + 1)+ + q2(k−m+1)(m)+(�− k +m)+

}
(denoting j − n by j )

= (m + �− n)+!

(m)+!(� + 1− n)+!
(−1)n

�+1−n∑
j=0

(−1)j qj (j−1)

(
� + 1− n

j

)
+

×{
(m + �− n + 1− j)+(k −m + 1)+ + q2(k−m+1)(m)+(�− k +m)+

}
(using

n∑
j=0

(−1)j qj (j−1)

(
n

j

)
+

(M − j)+ = (M)+δn0 + q2(M−1)δn1 (A.2)

and (5.30) with β → n, σ → j )

= (m + �− n)+!

(m)+!(� + 1− n)+!
(−1)n{q2m(k −m + 1)+δ�n

+(m)+
[
(k −m + 1)+ + q2(k−m+1)(�− k +m)+

]
δ�+1 n}

= (m + �− n)+!

(m)+!(� + 1− n)+!
(−1)n

{
q2m(k −m + 1)+δ�n + (m)+(� + 1)+δ�+1 n

}
= (−1)n

{
q2m(k −m + 1)+δ�n + (� + 1)+δ�+1 n

}
. (A.3)
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Combining (A.1) and (A.3), we get eventually (for k � m + �)

E2E
(m)
1 E

(k)
2 E

(�)
1 |p; 0, 0, 0〉 =

�+1∑
n=0

q̄(�−n)(k+1)+m

×{
q2m(k −m + 1)+δ�n + (� + 1)+δ�+1 n

}
E
(m+�−n)
1 E

(k+1)
2 E

(n)
1 |p; 0, 0, 0〉

= qm(k −m + 1)+E
(m)
1 E

(k+1)
2 E

(�)
1 |p; 0, 0, 0〉

+ qk−m+1(� + 1)+E
(m−1)
1 E

(k+1)
2 E

(�+1)
1 |p; 0, 0, 0〉. (A.4)
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